NATIONAL ANNEX TO CYS EN 1993-4-1:2007 (Including AC:2009 and A1:2017) NA to CYS EN 1993-4-1:2007 (Including A1:2017 and AC:2009)

Eurocode 3: Design of steel structures

Part 4-1: Silos

NATIONAL ANNEX

TO

NATIONAL ANNEX

TO

CYS EN 1993-4-1:2007+AC:2009+A1:2017

Eurocode 3: Design of steel structures

Part 4-1: Silos

This National Annex has been approved by the Board of Directors of the Cyprus Organisation for Standardisation (CYS) on 14.06.2019.

Copyright

Right to reproduce and distribute belongs to the Cyprus Organisation for Standardisation.

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, without permission in writing from Cyprus Organisation for Standardisation.

If you have any questions about standards copyright, please contact Centre of Information and Customer Service at the Cyprus Organisation for Standardisation phone: +357 22 411413/4 email: c.service@cys.org.cy

INTRODUCTION

This National Annex has been prepared by the CYS TC 18 National Standardisation Technical Committee of the Cyprus Organisation for Standardisation. (CYS)

NA 1 SCOPE

This National Annex is to be used together with CYS EN 1993-4-1:2007+AC:2009+A1:2017. Any reference in the rest of this text to CYS EN 1993-4-1:2007 means the above document.

This National Annex gives:

- (a) Nationally determined parameters for the following clauses of CYS EN 1993-4-1:2007 where National choice is allowed (see Section NA 2)
 - 2.2 (1)
 - 2.2 (3)
 - 2.9.2.2 (3)
 - 3.4 (1)
 - 4.1.4 (2) and (4)
 - 4.2.2.3 (6)
 - 4.3.1 (6) and (8)
 - 5.3.2.3 (3)
 - 5.3.2.4 (10), (12) and (15)
 - 5.3.2.5 (10) and (14)
 - 5.3.2.6 (3) and (6)
 - 5.3.2.8 (2)
 - 5.3.3.5 (1) and (2)
 - 5.3.4.3.2 (2)
 - 5.3.4.3.3 (2) and (5)
 - 5.3.4.3.4 (5)
 - 5.3.4.5 (3)
 - 5.4.4 (2), (3) and (4)
 - 5.4.7 (3)
 - 5.5.2 (3)
 - 5.6.2 (1) and (2)
 - 6.1.2 (4)
 - 6.3.2.3 (2) and (4)
 - 6.3.2.7 (4)
 - 7.3.1 (4)
 - 8.3.3 (4)
 - 8.4.1 (6)
 - 8.4.2 (5)
 - 8.5.3 (3)
 - 9.5.1 (3) and (4)
 - 9.5.2 (5)
 - 9.8.2 (1) and (2)
 - A.2 (1) and (2)
 - A.3.2.1 (6)
 - A.3.2.2 (6)
 - A.3.2.3 (2)

CYS TC 18 Page 2 of 7

- A.3.3 (1), (2) and (3)
- A.3.4 (4)
- (b) Decisions on the use of the Informative Annexes A, B and C (see Section NA 3)
- (c) References to non-contradictory complementary information to assist the user to apply CYS EN 1993-4-1:2007. In this National Annex such information is provided for the following clauses in CYS EN 1993-4-1:2007 (see Section NA 4)
 - None

NA 2 NATIONALLY DETERMINED PARAMETERS

NA 2.1 Clause 2.2 (1) Reliability differentiation

No consequence classes for silos are defined.

NA 2.2 Clause 2.2 (3) Reliability differentiation

No information on the consequence classes is provided.

NA 2.3 Clause 2.9.2.2 (3) Partial factors for resistances

Table 2.2 (CYS) provides the numerical values of partial factors γ_{Mi} .

Table 2.2 (CYS): Numerical values for the partial factors for resistance

$\gamma_{M0} = 1,00$	$\gamma_{M1} = 1,10$	$\gamma_{M2} = 1,25$
$\gamma_{M4} = 1,00$	$\gamma_{M5} = 1,25$	$\gamma_{M6} = 1,10$

NA 2.4 Clause 3.4 (1) Special alloy steels

No information is provided on appropriate values of relevant mechanical properties.

NA 2.5 Clause 4.1.4 (2) Allowance for corrosion and abrasion

The value Δt_a is specified as $\Delta t_a = 2$ mm.

NA 2.6 Clause 4.1.4 (4) Allowance for corrosion and abrasion

No appropriate values for corrosion and abrasion losses for particular solids in frictional contact with defined silo wall materials are provided.

NA 2.7 Clause 4.2.2.3 (6) Consequence Class 2

The value of n_{vs} is specified as n_{vs} = 5.

NA 2.8 Clause 4.3.1 (6) Modelling of the structural box

The value of n_S is specified as n_S = 40.

NA 2.9 Clause 4.3.1 (8) Modelling of the structural box

The value of n_{ew} is specified as n_{ew} = 16.

NA 2.10 Clause 5.3.2.3 (3) Plastic limit state

The value of j_i for different joint configurations is specified as follows:

Joint efficiency j_i of welded lap joints

CYS TC 18 Page 3 of 7

Joint type	Sketch	Value of j _i
Double welded lap		$j_1 = 1,0$
Single welded lap		$j_2 = 0,35$

The single welded lap joint should not be used if more than 20 % of the value of $\sigma_{e,Ed}$ in expression 5.4 of EN 1993-4-1:2007 derives from bending moments.

NA 2.11 Clause 5.3.2.4 (10) Buckling under axial compression

The value of ψ_b is specified as $\psi_b = 0.40$.

NA 2.12 Clause 5.3.2.4 (12) Buckling under axial compression

The values of α_L k₁ and k₂ are specified as follows: α_L = 0,7 α ; k₁= 0,5 and k₂= 0,25, where α is given by α_0 , α_{pe} , α_{pp} as appropriate.

NA 2.13 Clause 5.3.2.4 (15) Buckling under axial compression

The values of $\beta = 1 - 0.95 / [1 + 1.2 (w_{ok} / t)]$, $\eta = 5.4 / [1 + 4.6 (w_{ok} / t)]$ and $\chi_h = 1.0$ are recommended.

NA 2.14 Clause 5.3.2.5 (10) Buckling under external pressure, internal partial vacuum and wind

The value of α_n is specified as $\alpha_n = 0.5$.

NA 2.15 Clause 5.3.2.5 (14) Buckling under external pressure, internal partial vacuum and wind

The value of k_1 is specified as $k_1 = 0,1$.

NA 2.16 Clause 5.3.2.6 (3) Membrane shear

The value of k_s is specified as $k_s = 0.10$.

NA 2.17 Clause 5.3.2.6 (6) Membrane shear

The value of α_{τ} is specified as α_{τ} = 0,80.

NA 2.18 Clause 5.3.2.8 (2) Fatigue, LS4

The value of $N_{\rm f}$ is specified as $N_{\rm f}$ = 10 000.

NA 2.19 Clause 5.3.3.3 Buckling under axial compression

The recommended value for k_s is specified as k_s = 0,50.

NA 2.20 Clause 5.3.3.5 (1) Membrane shear

The value of k_s is specified as k_s = 0,10.

NA 2.21 Clause 5.3.3.5 (2) Membrane shear

The value of k_t is specified as k_t = 4,0.

CYS TC 18 Page 4 of 7

NA 2.22 Clause 5.3.4.3.2 (2) Unstiffened wall

The value of α_x is specified as $\alpha_x = 0.80$.

NA 2.23 Clause 5.3.4.3.3 (2) Stiffened wall treated as an orthotropic shell

The value of $k_{\rm dx}$ is specified as $k_{\rm dx} = 9.1$.

NA 2.24 Clause 5.3.4.3.3 (5) Stiffened wall treated as an orthotropic shell

The value of α_x is specified as $\alpha_x = 0.80$.

NA 2.25 Clause 5.3.4.3.4 (5) Stiffened wall treated as carrying axial compression only in the stiffeners

The value of k_s is specified as k_s = 6.

NA 2.26 Clause 5.3.4.5 (3) Buckling under external pressure, partial vacuum or wind

The value of $k_{d\theta}$ is specified as $k_{d\theta} = 7.4$.

NA 2.27 Clause 5.4.4 (2) Discretely supported cylindrical shell

The values of $(r/t)_{\text{max}}$, k_1 , k_2 and k_3 are specified as follows: $(r/t)_{\text{max}} = 400$, $k_1 = 2,0$, $k_2 = 1,0$ and $k_3 = 1,0$.

NA 2.28 Clause 5.4.4 (3) Discretely supported cylindrical shell

The value of k_s is specified as $k_s = 0.10$.

NA 2.29 Clause 5.4.4 (4) Discretely supported cylindrical shell

The value of k_L is specified as $k_L = 4.0$.

NA 2.30 Clause 5.4.7 (3) Anchorage at the base of a silo

The values for the harmonic coefficients of wind pressure C_m relevant to specific conditions for Class 1 and 2 silos are specified as follows: M=4; $C_1=+0.25$; $C_2=+1.0$; $C_3=+0.45$ and $C_4=-0.15$. For Class 3 silos, the more precise distribution with M=4 for isolated silos and M=10 for grouped silos given in Annex C of EN 1993-4-1:2007 are adopted.

NA 2.31 Clause 5.5.2 (3) Rectangular openings

The value of k_{d1} is specified as $k_{d1} = 0.02$.

NA 2.32 Clause 5.6.2 (1) Deflections

The value of k_{d2} is specified as k_{d2} = 0,02.

NA 2.33 Clause 5.6.2 (2) Deflections

The values of k_{d3} and k_{d4} are specified as follows: k_{d3} = 0,05 and k_{d4} = 20.

NA 2.34 Clause 6.1.2 (4) Hopper wall design

The value of γ_{M0g} is specified as $\gamma_{M0g} = 1.4$.

NA 2.35 Clause 6.3.2.3 (2) Rupture at the transition junction

The value of g_{asym} is specified as $g_{asym} = 1,2$.

NA 2.36 Clause 6.3.2.3 (4) Rupture at the transition junction

The value of k_r is specified as $k_r = 0.90$.

NA 2.37 Clause 6.3.2.7 (3) Buckling in hoppers

The value of a_{xh} is specified as a_{xh} = 0,30.

NA 2.38 Clause 7.3.1 (4) Shell or unsupported roofs

The value of a_p is specified as $a_p = 0.20$.

NA 2.39 Clause 8.3.3 (4) Resistance to in-plane buckling

The value of β_{lim} is specified as $\beta_{\text{lim}} = 20^{\circ}$.

NA 2.40 Clause 8.4.1 (6) Uniformly supported transition junctions

The values of β_{lim} , k_{L} and k_{R} are specified as follows: $\beta_{\text{lim}} = 10^{\circ}$; $k_{\text{L}} = 10$ and $k_{\text{R}} = 0.04$.

NA 2.41 Clause 8.4.2 (5) Transition junction ring girder

The values of β_{lim} , k_{L} and k_{R} are specified as follows: $\beta_{\text{lim}} = 10^{\circ}$; $k_{\text{L}} = 10$ and $k_{\text{R}} = 0.04$.

NA 2.42 Clause 8.5.3 (3) Base ring

The value of k is specified as k=0,10.

NA 2.43 Clause 9.5.1 (3) Forces in internal ties due to solids pressure on them

The values of C_{sc} and C_{ss} are specified as follows: $C_{sc} = 1,0$ and $C_{ss} = 1,2$.

NA 2.44 Clause 9.5.1 (4) Forces in internal ties due to solids pressure on them

The values of k_{Lf} and k_{Le} are specified as follows: k_{Lf} = 4,0 and k_{Le} = 2,0.

NA 2.45 Clause 9.5.2 (5) Modelling of ties

The value of k_s is specified as k_s = 0,01.

NA 2.46 Clause 9.8.2 (1) Deflections

The values of k_1 and k_2 are specified as follows: $k_1 = 0.02$ and $k_2 = 10$.

NA 2.47 Clause 9.8.2 (2) Deflections

The value of k_3 is specified as $k_3 = 0.05$.

NA 2.48 Clause A.2 (1) Action effect assessment

The value of $k_{\rm M}$ is specified as $k_{\rm M}$ = 1,1.

NA 2.49 Clause A.2 (2) Action effect assessment

The value of k_h is specified as k_h = 1,2.

NA 2.50 Clause A.3.2.1 (6) Plastic limit state

The value of j_i for different joint configurations is specified as follows:

Joint efficiency j_i of welded lap joints

CYS TC 18 Page 6 of 7

Joint type	Sketch	Value of j _i
Double welded lap		j ₁ = 1,0
Single welded lap		$j_2 = 0.35$

NA 2.51 Clause A.3.2.2 (6) Axial compression

The value of γ_{M1} is specified as $\gamma_{M1} = 1,1$.

NA 2.52 Clause A.3.2.3 (2) External pressure, internal partial vacuum and wind

The values of a_n and p_{M1} are specified as follows: $a_n = 0.5$ and $p_{M1} = 1.1$.

NA 2.53 Clause A.3.3 (1) Conical welded hoppers

The value of γ_{M0g} is specified as $\gamma_{M0g} = 1,4$.

NA 2.54 Clause A.3.3 (2) Conical welded hoppers

The value of g_{asym} is specified as $g_{asym} = 1,2$.

NA 2.55 Clause A.3.3 (3) Conical welded hoppers

The value of k_r is specified as $k_r = 0.90$.

The value of γ_{M2} is specified as $\gamma_{M2}=1,25$.

NA 2.56 Clause A.3.4 (4) Transition junction

The value of γ_{M0} is specified as $\gamma_{M0}=1,0$.

NA 3 DECISION ON USE OF THE INFORMATIVE ANNEXES

NA 3.1 Annex A

Annex B may be used

NA 3.2 Annex B

Annex C may be used

NA 3.3 Annex C

Annex E may be used

NA 4 REFERENCES TO NON-CONTRADICTORY COMPLEMENTARY INFORMATION

None

CYS TC 18 Page 7 of 7

NA to CYS EN 1993-4-1:2007 (Including A1:2017 and AC:2009)

CYPRUS ORGANISATION FOR STANDARDISATION

Limassol Avenue and Kosta Anaxagora 30, 2nd & 3rd Floor, 2014 Strovolos, Cyprus P.O.BOX.16197, 2086 Nicosia, Cyprus

Tel: +357 22 411411 Fax: +357 22 411511

E-Mail: cystandards@cys.org.cy
Website: www.cys.org.cy